供应信息 工程改造 培训报名 在线报修 供求信息发布
 
〖产 品 分 类〗
变频器
PLC
触摸屏
软启动器
伺服控制器
制动电阻
制动单元
UPS
直流调速器
〖本 站 公 告〗
1,安川变频器 西门子变频器 三菱变频器 AB变频器 ABB变频器 施耐德变频器 富士变频器 丹佛斯变频器 以上变频器大量现货库存,价位满意为止,欢迎来电洽谈!
2,变频器,河南变频器,变频器维修,请到工控世界,工控世界有大量的现货库存,完备的检测设备,充足的配件和技术精湛的工程师,能维修国内外各种变频器,PLC,触摸屏,和承接中大型工业电气自动化工程.
3,设有维修部,工程部,培训部,确保有良好的售后和高端前沿电气技术的推广交流及培训。
4,培训部招收学员:每月1号开课。 西门子变频器,PLC,触摸屏系统培训班,2000元,包教会;三菱变频器,PLC,触摸屏系统培训班,2000元,包教会;欧姆龙变频器,PLC,触摸屏系统培训班,2000元,包教会.

5,我公司郑重承诺:省内售后终身2个小时内响应,24小时内赶赴现场,72小时内解决问题。

6,所售产品质保一年,一年内全国免费维修,修不好换新机。

7,所维修产品质保期三个月,三个月内免费维修。修不好全额退款或协调调换新机。

8,售后24小时服务热线:0371-88881886/66660816/86065007/13007535835

9,公司成立10年,具有丰富的变频器,PLC,触摸屏,伺服控制器UPS,直流调速器调试维修经验,具有完成大中型工业自动化工程的能力和案例。

10,占总人数80%的技术精湛的高级电气工程师团队,实时掌握高科技含量的国际前沿的自动化最新产品,为你提供合理化电气解决方案!为你排忧解难!与你携手走向成功!

11,1000余家的客户见证,良好的口碑,强有力的售前售中售后服务。

16,本站正在改版,不足和不便之处请多包涵。
〖供求信息〗
☆ 供应信息安川变频器H1000-30KW新 理想价位15500 联系人张伦 电话0371-888818860371-8606500713007535835
〖典 型 客 户〗
化妆品排行榜
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
〖资 质 证 书〗

宝宝食谱

 

 


数控系统 
【字体: 】【打印】 【关闭
主要数控系统类型有:
⑴SINUMERIK 802S/C系统
SINUMERIK 802S/C系统专门为低端数控机床市场而开发的经济型CNC控制系统。802S/C两个系统具有同样的显示器,操作面板,数控功能,PLC编程方法等,所不同的只是SINUMERIK 802S带有步进驱动系统,控制步进电机,可带3个步进驱动轴及一个±10V模拟伺服主轴;SINUMERIK 802C带有伺服驱动系统,它采用传统的模拟伺服±10V接口,最多可带3个伺服驱动轴及一个伺服主轴。
⑵SINUMERIK 802D系统
该系统属于中低档系统,其特点是:全数字驱动,中文系统,结构简单(通过PROFIBUS连接系统面板、I/O模块和伺服驱动系统),调试方便。具有免维护性能的SINUMERIK 802D核心部件-控制面板单元(PCU)具有CNC、PLC、人机界面和通讯等功能,集成的PC硬件可使用户非常容易地将控制系统安装在机床上。
⑶SINUMERIK 840D/810D/840Di系统
840D/810D是几乎同时推出的,具有非常高的系统一致性,显示/操作面板、机床操作面板、S7-300PLC、输入/输出模块、PLC编程语言、数控系统操作、工件程序编程、参数设定、诊断、伺服驱动等许多部件均相同。
SINUMERIK 810D是840D的CNC和驱动控制集成型,SINUMERIK 810D系统没有驱动接口,SINUMERIK 810D NC软件选件的基本包含了840D的全部功能。
采用PROFIBUS-DP现场总线结构西门子840Di系统,全PC集成的SINUMERIK 840Di数控系统提供了一个基于PC的控制概念。
⑷SINUMERIK 840C系统
SINUMERIK 840C系统一直雄居世界数控系统水平之首,内装功能强大的PLC 135WB2,可以控制SIMODRⅣE 611A/D模拟式或数字式交流驱动系统,适合于高复杂度的数控机床。
交流驱动系统
⑴SIMODRⅣE611A:模拟式伺服,配合1FT5系列进给驱动电机(600V)和1PH7主轴电机,可控制主轴,进给轴,及普通异步电机。
⑵ SIMODRⅣE 611D:数字式伺服,配合1FT6/1FK6系列进给驱动电机和1PH7主轴电机,可控制主轴,进给轴等,只能配合810D、840D、840C数控系统。
⑶SIMODRⅣE 611U:通用型伺服,可接收模拟信号或数字信号(PROFIBUS),可以进行位置控制、速度控制及转矩控制。配合1FT6/1FK6和1PH7电机,是理想的驱动系统解决方案之一。
⑷ SIMODRⅣE 611UE:通用E型伺服,通过PROFIBUS接连,其余同611U。
三菱数控系统
1873年,三菱造船厂更名为三菱商会。三菱开始涉足采矿、造船、银行、保险、仓储和贸易。随后,又经营纸、钢铁、玻璃、电气设备、飞机、石油和房地产。三菱建立了一系列的企业,在日本工业现代化的过程中扮演着举足轻重的角色。三菱电机自动化一直致力于为客户在工业自动化、电力控制及其他相关业务上提供专业产品设备和解决方案,产品被广泛应用于机械、冶金、电力等多个领域。
广州数控(GSK)系统
中国南方数控产业基地,广东省20家重点装备制造企业之一,中国国家863重点项目《中档数控系统产业化支撑技术》承担企业,拥有中国最大的数控机床连锁超市。公司秉承科技创新、追求卓越品质,以提高用户生产力为先导,以创新技术为动力,为用户提供GSK全系列机床控制系统、进给伺服驱动装置和伺服电机、大功率主轴伺服驱动装置和主轴伺服电机等数控系统的集成解决方案,积极推广机床数控化改造服务,开展数控机床贸易。GSK拥有国内最大的数控系统研发生产基地,中国一流的生产设备和工艺流程,科学规范的质量控制体系保证每套产品合格出厂。GSK产品批量配套全国五十多家知名机床生产企业,是中国主要机床厂家数控系统首选供应商。
⑴GSK980T车床数控系统(CNC),于1998年推出的普及型数控系统。作为经济型数控系统的升级换代产品,GSK980T具有以下技术特点:
采用高级处理器(CPU)和可编程门阵列(PLD)进行硬件插补,实现高速μm级控制
采用四层线路板,集成度高,整机工艺结构合理,可靠性高
液晶(LCD)中文显示、界面友好、操作方便
加减速可调,可配套步进驱动器或伺服驱动器
可变电子齿轮比,应用方便
⑵GSK928TC车床数控系统
GSK928TC为经济型μm级车床数控系统,采用大规模门阵列(CPLD)进行硬件插补,真正实现了高速μm级控制。
使用图形液晶显示器(LCD),中文菜单及刀具轨迹图形显示,界面友好。加减速时间可调,可适配反应式步进系统、混合式步进
系统或交流伺服系统构成不同档次的车床数控系统。
⑶GSK980i车床数控系统
GSK980i车床数控系统(CNC)为新近推出的中高档数控系统,该系统率先采用以DSP运动控制芯片为核心、以嵌入式结构PC为平台(PC-BASED)的新一代数控系统。该系统采用DSP和主CPU并行处理机制,具有较高的动态跟踪精度和良好的加工性能,可作为经济型数控的升级换代产品。GSK980i系统具有以下特点:
四个独立的伺服电机连接口可实现两轴联动和四轴的全闭环控制
独立主轴通道可连接模拟量主轴(0-10V)或伺服主轴
具有一个可带512点的串行I/0接口
完全的速度环控制系统,高速、高精度、高效率
中、英文界面可选
图形、坐标、代码实时跟踪
全功能代码编辑器,编辑大小不受限制
直观的MDI输入控制
方便直接的系统参数配置
PLC梯形图输入(选配)
在线代码帮助体系故障诊断
华中数控系统简介
华中数控系统有限公司成立与1995年,由华中理工大学,中国国家科技部,湖北省,武汉市科委,武汉市东胡高新技术开发区,香港大同工业设备有限公司等政府部门和企业共同投资组建。近几年来,公司都以300%的速度迅猛发展。
公司在“八五”期间,承担了多项国家数控攻关重点课题,取得了一大批重要成果。其中“华中I型数控系统”在中国率先通过技术鉴定,在同行业中处于领先地位,被专家评定为“重大成果”、“多项创新”、“国际先进”。该项目同时还获得了中国国家863的重点支持。1997年,华中I型数控系统被国家科技部列入1997年度中国国家新产品计划(742176163004)”和“九五国家科技成果重点推广计划指南项目(98020104A)”。
⑴华中I型(HNC-1)高性能数控系统主要特点:
1)以通用工控机为核心的开放式体系结构
系统采用基于通用32位工业控制机和DOS平台的开放式体系结构,可充分利用PC的软硬件资源,二次开发容易,易于系统维护和更新换代、可靠性好。
2)独创的曲面直接插补算法和先进的数控软件技术
处于国际领先水平的曲面直接插补技术将CNC上的简单直线,圆弧差补功能提高到曲面轮廓的直接控制,可实现高速、高效和高精度的复杂曲面加工。采用汉字用户界面,提供完善的在线帮助功能,具有三维仿真校验和加工过程图形动态跟踪功能,图形显示形象直观。
3) 系统配套能力强
公司具备了全套数控系统配套能力。系统可选配该公司生产的HSV-11D交流永磁同步伺服驱动与伺服电机、HC5801/5802系列步进电机驱动单元与电机、HG.BQ3-5B三相正弦波混合式驱动器与步进电机和国内外各类模拟式、数字式伺服驱动单元。
⑵华中-2000型高性能数控系统
是面向21世纪的新一代数控系统 华中-2000型数控系统 (HNC-2000) 是在国家八· 五科技攻关重大科技成果----华中I型(HNC-1)高性能数控系统的基础上开发的高档数控系统。该系统采用通用工业PC机、TFT真彩色液晶显示器,具有多轴多通道控制能力和内装式PLC,可与多种伺服驱动单元配套使用。具有开放性好、结构紧凑、集成度高、可靠性好、性能价格比高、操作维护方便的优点,是适合中国国情的新一代高性能、高档数控系统。
⑶HNC-1M铣床、加工中心数控系统
HNC-1M铣床、加工中心数控系统采用以工业PC机为硬件平台,DOS及其丰富的支持软件为软件平台的技术路线,使得系统具有可靠性好,性能价格比高,更新换代和维护方便,便于用户二次开发等优点。系统可与各种3~9轴联动的铣床、加工中心配套使用。系统除具有标准数控功能外,还内设二级电子齿轮、内装式可编程控制器、双向式螺距补偿、加工断点保护与恢复、故障诊断与显示功能。独创的三维曲面直接插补功能,极大简化零件程序信息和加工辅助工作。此外,系统使用汉字菜单和在线帮助,操作方便,具有三维仿真校验及加工过程动态跟踪能力,图形显示形象直观。
⑷HNC-1T车床数控系统
可与各种数控车床、车削加工中心配套使用。该系统以32位工业PC机为控制机,其处理能力、运算速度、控制精度、人机界面及图形功能等方面均较流行的车床数控系统有较大的提高。系统具有类似高级语言的宏程序功能,可以进行平面任意曲线的加工。系统操作方便,性能可靠,配置灵活,功能完善,具有良好的性能价格比。
C70三菱数控系列
⒈满足生产线(汽车发动机等)部品加工要求,提高了可靠性,缩短了故障时间
2 .一块基板上同时最大可连接2个NC控制器
⒊ 强化了数控功能(单个NC控制器内支持最大系统数7,最大支持6主轴)
4 .标准采用彩色触摸屏显示器,可用GT Designer自定义操作界面
⒌PC平台伺服自动调整软件MS Configurator,简化伺服优化手段
⒍ 全面采用高速光纤通信,提升数据传输速率和可靠性
M700V三菱数控系列
⒈完全纳米控制系统,高精度高品位加工
⒉ 支持5轴联动,可加工复杂表面形状的工件
⒊多样的键盘规格(横向、纵向)支持
⒋支持触摸屏,提高操作便捷性和用户体验
⒌支持向导界面(报警向导、参数向导、操作向导、G代码向导等),改进用户使用体验
⒍标准提供在线简易编程支援功能(NaviMill、NaviLathe),简化加工程序编写
7·NCDesigner自定义画面开发对应,个性化界面操作,提高机床厂商知名度
⒏标准搭载以太网接口(10BASE-T/100BASE-T),提升数据传输速率和可靠性
⒐PC平台伺服自动调整软件MS Configurator,简化伺服优化手段
⒑支持高速同期攻牙OMR-DD功能,缩短攻牙循环时间,最小化同期攻牙误差
⒒全面采用高速光纤通信,提升数据传输速度和可靠性
M70V三菱数控系列
1针对客户不同的应用需求和功能细分,可选配M70V Type A:11轴和Type B:9轴
⒉M70VA铣床标准支持双系统
⒊M70V系列最小指令单位0.1微米,内部控制单位提升至1纳米
⒋最大程序容量提升到2560m(选配),增大自定义画面存储容量(需要外接板卡)
⒌M70V系列拥有与M700V系列相当的PLC处理性能
⒍画面色彩由8bit提升至16bit,效果更加鲜艳? 支持向导界面(报警向导、参数向导、操作向导、G代码向导等),改进用户使用体验
⒎标准提供在线简易编程支援功能(NaviMill、NaviLathe),简化加工程序编写
8·NCDesigner自定义画面开发对应,个性化界面操作,提高机床厂商知名度
⒐标准搭载以太网接口(10BASE-T/100BASE-T),提升数据传输速率和可靠性
⒑PC平台伺服自动调整软件MS Configurator,简化伺服优化手段
⒒支持高速同期攻牙OMR-DD功能,缩短攻牙循环时间,最小化同期攻牙误差
12全面采用高速光纤通信,提升数据传输速度和可靠性
C64三菱数控系列
1对应多种三菱FA网络:MELSECNET/10、以太网和CC-LINK,实现了以10M/100Mbps的速度进行高速、大容量的数据通讯,进一步提高生产线的
加工效率。
2·NC内藏PLC机能强化:GX-Developer对应;指令种类充实;多个PLC程序同时运行;运行中PLC程序修改;多系统PLC接口信号配置等。
3.专机用PLC指令扩充:增加了ATC、 ROT、 TSRH、 DDBA、 DDBS指令,简化了PLC程序设计。
4.数控功能强化、多轴、多系统对应。
E60三菱数控系列
⒈内含64位CPU的高性能数控系统,采用控制器与显示器一体化设计,实现了超小型化。
⒉伺服系统采用薄型伺服电机和高分辨率编码器(131,072脉冲 / 转),增量 / 绝对式对应。
⒊标准4种文字操作界面:简体 / 繁体中文,日文 / 英文。
⒋由参数选择车床或铣床的控制软件,简化维修与库存。
⒌全部软件功能为标准配置,无可选项,功能与M50系列相当。
⒍标准具备1点模拟输出接口,用以控制变频器主轴。
⒎可使用三菱电机MELSEC开发软件GX-Developer,简化PLC梯形图的开发。
⒏可采用新型2轴一体的伺服驱动器MDS-R系列,减少安装空间。
⒐开发伺服自动调整软件,节省调试时间及技术支援之人力。
M60S三菱数控系列
⒈所有M60S系列控制器都标准配备了RISC 64位CPU,具备目前世界上最高水准的硬件性能。(与M64相比,整体性能提高了1.5倍)
⒉高速高精度机能对应,尤为适合模具加工。(M64SM-G05P3:16.8m/min以上,G05.1Q1:计划中)
⒊标准内藏对应全世界主要通用的12种多国语言操作界面(包括繁体/简体中文)
⒋可对应内含以太网络和IC卡界面(M64SM-高速程序伺服器:计划中)
⒌坐标显示值转换可自由切换(程序值显示或手动插入量显示切换)
⒍标准内藏波形显示功能,工件位置坐标及中心点测量功能 ☆ 缓冲区修正机能扩展:可对应IC卡/计算机链接B/DNC/记忆/MDI等模式
⒎编辑画面中的编辑模式,可自行切换成整页编辑或整句编辑。
⒏图形显示机能改进:可含有道具路径资料,以充分显示工件坐标及道具补偿的实际位置。
⒐简易式对话程序软件(使用APLC所开发之Magicpro-NAⅥ MILL对话程序)
⒑可对应Windows95/98/2000/NT4.0/Me的PLC开发软件
⒒特殊G代码和固定循环程序,如G12/13 、G34/35/36、 G37.1等。

发展

数控系统及相关的自动化产品主要是为数控机床配套。数控机床是以数控系统为代表的新技术对传统机械制造产业的渗透而形成的机电一体化产品:数控系统装备的机床大大提高了零件加工的精度、速度和效率。这种数控的工作母机是国家工业现代化的重要物质基础之一。
数值控制(简称“数控”或“NC”)的概念是把被加工的机械零件的要求,如形状、尺寸等信息转换成数值数据指令信号传送到电子控制装置,由该装置控制驱动 机床刀具的运动而加工出零件。而在传统的手动机械加工中,这些过程都需要经过人工操纵机械而实现,很难满足复杂零件对加工的要求,特别对于多品种、小批量 的零件,加工效率低、精度差。
1952年,美国麻省理工学院与帕森斯公司进行合作,发明了世界上第一台三坐标数控铣床。控制装置由2000多个电子管组成,约一个普通实验室大小。伺服机构采用一台小伺服马达改变液压马达斜盘角度以控制液动机速度。其插补装置采用脉冲乘法器。这台NC机床的研制成功标志着NC技术的开创和机械制造的一个新的、数值控制时代的开始。
现代CNC系统的功能、性能大大提高,故障率已降至0.01次/(月·台)。以FANUC公司为例,1991年开发成功的FS15系统与1971年开发的FS220系统相比,体积只有后者的十分之一,而加 工精度提高了10倍,加工速度提高了20倍,可靠性提高了30倍以上。NC技术已成为先进制造技术的基础和关键技术。
电子元件技术的发展
微电子技术的发展,对数控技术起着极大的推动作用。日本FANUC公司在1956年开始采用电子管研究NC,1959年就采用锗晶体管组成NC,1963 年采用硅晶体管研制出FS220、FS240等系统,1969年又采用中小规模IC更新了FS220、FS240等系统。20世纪70年代,开始采用 3SI推出了FS5、FS7、FS3、FS6、FS0、FS18、FS16、FS20、FS21、FS15等一系列CNC系统,从4位的位片机(FS7)到16 位的8086(FS6)和32位的80486(FS0)。1996年,FANUC采用最新专用芯片352Pin的微电子工艺BGA封装及采用MCM工艺生 产的微处理器,推出了小型化高性能的i系列数控系统,大小只有原有系统的1/4,大大减小了占用的空间,提高了系统的性能及可靠性。
软件的应用
在1970年的芝加哥展览会上,首次展出了由小型机组成的CNC数控系统。大约在同时,英特尔公司发明了微处理器。1974年,美、日等国相继研制出以微处理器为核 心的CNC,有时也称为MNC。它运用计算机存贮器里的程序完成数控要求的功能。其全部或部分控制功能由软件实现,包括译码、刀具补偿、速度处理、插补、 位置控制等。采用半导体存贮器存贮零件加工程序,可以代替打孔的零件纸带程序进行加工,这种程序便于显示、检查、修改和编辑,因而可以减少系统的硬件配 置,提高系统的可靠性。采用软件控制大大增加了系统的柔性,降低了系统的制造成本。
数控标准的引入
随着NC成为机械自动化加工的重要设备,在管理和操作之间,都需要有统一的术语、技术要求、符号和图形,即有统一的标准,以便进行世界性的技术交流和贸 易。NC技术的发展,形成了多个国际通用的标准:即ISO国际标准化组织标准、IEC国际电工委员会标准和EIA美国电子工业协会标准等。最早制订的标准 有NC机床的坐标轴和运动方向、NC机床的编码字符、NC机床的程序段格式、准备功能和辅助功能、数控纸带的尺寸、数控的名词术语等。这些标准的建立,对 NC技术的发展起到了规范和推动作用。ISO基于用户的需要和对下一个5年间信息技术的预测,又在酝酿推出新标准“CNC控制器的数据结构”。它把 AMT(先进制造技术)的内容集中在两个主要的级别和它们之间的连接上:第一级CAM,为车间和它的生产机械:第二级是上一级,为数据生成系统,由 CAD、CAP、 CAE和NC编程系统及相关的数据库组成。
伺服技术的发展
伺服装置是数控系统的重要组成部分。20世纪50年代初,世界第一台NC机床的进给驱动采用液压驱动。由于液压系统单位面积产生的力大于电气系统所产生的 力(约为20:1),惯性小、反应快,因此当时很多NC系统的进给伺服为液压系统。70年代初期,由于石油危机,加上液压对环境的污染以及系统笨重、效率低等原因,美国GETTYS公司开发出直流大惯量伺 服电动机,静力矩和起动力矩大,性能良好,FANUC公司很快于1974年引进并在NC机床上得到了应用。从此,开环的系统逐渐被闭环的系统取代,液压伺 服系统逐渐被电气伺服系统取代。
电伺服技术的初期阶段为模拟控制,这种控制方法噪声大、漂移大。随着微处理器的采用,引入了数字控制。它有以下优点:①无温漂,稳定性好。②基于数值计 算,精度高。③通过参数对系统设定,调整减少。④容易做成ASIC电路。对现代数控系统,伺服技术取得的最大突破可以归结为:交流驱动取代直流驱动、数字 控制取代模拟控制、或者称为软件控制取代硬件控制。20世纪90年代,许多公司又研制了直线电动机,由全数字伺服驱动,刚性高,频响好,因而可获得高速 度。
自动编程的采用
编程的方法有手工编程和自动编程两种。据统计分析,采用手工编程,一个零件的编程时间与机床加工之比,平均约为30:1。为了提高效率,必须采用计算机或 程编机代替手工编程。自动编程需要有自动化编程语言,其中麻省理工学院研制的APT语言是最典型的一种数控语言,它大大地提高了编程效率。从70年代开始 出现的图象数控编程技术有效地解决了几何造型、零件几何形状的显示、交互设计、修改及刀具轨迹生成、走刀过程的仿真显示、验证等,从而推动了CAD和 CAM向一体化方向发展。
DNC概念的引入及发展
DNC概念从“直接数控”到“分布式数控”的变化,其内涵也发生了变化。“分布式数控”表明可用一台计算机控制多台数控机床。这样,机械加工从单机自动化的模式 扩展到柔性生产线及计算机集成制造系统。从通信功能而言,可以在CNC系统中增加DNC接口,形成制造通信网络。网络的最大特点是资源共享,通过DNC功 能形成网络可以实现:①对零件程序的上传或下传。②读、写CNC的数据。③PLC数据的传送。④存贮器操作控制。⑤系统状态采集和远程控制等。
可编程控制器的采用
在20世纪70年代以前,NC控制器与机床强电顺序控制主要靠继电器进行。60年代出现了半导体逻辑元件,1969年美国DEC公司研制出世界上第一台可编程序 控制器PLC。PLC很快就显示出优越性:设计的图形与继电器电路相似,形象直观,可以方便地实现程序的显示、编辑、诊断、存贮和传送:PLC没有继电器 电路那种接触不良,触点熔焊、磨损、线圈烧断等缺点。因此很快在NC机床上得到应用。在NC机床上指令执行时间可达到0.085µs/步,最大步数 为32000步。而且,使用PLC还可以大大减少系统的占用空间,提高系统的快速性和可靠性。
传感器技术的发展
一台NC系统与机械连结在一起时,它能控制的几何精度除受机械因素的影响外,闭环系统还主要取决于所采用的传感器,特别是位置和速度传感器,如可测量直线 位移和旋转角度的直线感应同步器和圆感应同步器、直线和圆光栅、磁尺、利用磁阻的传感器等。这些传感器由光学、精密机械、电子部件组成,一般分辨率为0.01~0.001mm,测量精度为±0.02~0.002mm/m,机床工作台速度为20m/min以下。随着机床精度的不断提高,对传感器的分辨率 和精度也提出了更高的要求。于是出现了具有“细分”电路的高分辨率传感器,比如FANUC公司研制的编码器通过细分可做到分辨率为10-7r。利用它构成 的高精度数控系统为超精控制及加工创造了条件。
开放技术的产生
1987年美国空军发表了著名的“NGC(下一代控制器)”计划,首先提出了开放体系结构的控制器概念。这个计划的重要内容之一便是提出了“开放系统体系结构标准 规格(SOSAS)”。美国空军把开放的体系结构定义为:在竞争的环境中允许多个制造商销售可相互交换和相互操作的模块。机床制造商可以在开放系统的平台 上增加一定的硬件和软件构成自己的系统。当前在市场上开放系统基本上有两种结构:①CNC+PC主板:把一块PC主板插入传统的CNC机器中,PC板主要 运行非实时控制,CNC主要运行以坐标轴运动为主的实时控制。②PC+运动控制板:把运动控制板插入PC机的标准插槽中作实时控制用,而PC机主要作非实 时控制。为了增加开放性,主流数控系统生产厂家往往采用方案①,即在不改变原系统基本结构的基础上增加一块PC板,提供键盘使用户能把PC和CNC联系在 一起,大大提高了人机界面的功能。典型的如FANUC公司的150/160/180/210系统。有些厂家也把这种装置称为融合系统(fusionsystem),由于它工作可靠,界面开放,越来越受到机床制造商的欢迎,成为NC技术的发展趋势之一。

常见故障

位置环
这是数控系统发出控制指令,并与位置检测系统的反馈值相比较,进一步完成控制任务的关键环节。它具有很高的工作频度,并与外设相联接,所以容易发生故障。
常见的故障有:①位控环报警:可能是测量回路开路;测量系统损坏,位控单元内部损坏。②不发指令就运动,可能是漂移过高,正反馈,位控单元故障;测量元件损坏。③测量元件故障,一般表现为无反馈值;机床回不了基准点;高速时漏脉冲产生报警可能的原因是光栅或读头脏了;光栅坏了。
伺服驱动系统
伺服驱动系统与电源电网,机械系统等相关联,而且在工作中一直处于频繁的启动和运行状态,因而这也是故障较多的部分。
电源部分
电源是维持系统正常工作的能源支持部分,它失效或故障的直接结果是造成系统的停机或毁坏整个系统。一般在欧美国家,这类问题比较少,在设计上这方面的因素考虑的不多,但在中国由于电源波动较大,质量差,还隐藏有如高频脉冲这一类的干扰,加上人为的因素(如突然拉闸断电等)。这些原因可造成电源故障监控或损坏。另外,数控系统部分运行数据,设定数据以及加工程序等一般存贮在RAM存贮器内,系统断电后,靠电源的后备蓄电池或锂电池来保持。因而,停机时间比较长,拔插电源或存贮器都可能造成数据丢失,使系统不能运行。

五轴数控

具有五轴功能的数控机床可以以多种姿态实现工件与刀具间的相对运动,一方面可以保持刀具更好的加工姿 态,避免刀具中心极低的切削速度,也可以避免刀具和工件、卡具间的干涉,实现有限行程内更大加工范围。 五轴功能也是衡量数控系统能力的重要指标。

工件坐标旋转

对于具有转台结构的五轴机床,工件与回转工作台固结,即工件坐标系(WCS)与回转工作台固结。当工作台旋转后,工件坐标系(WCS)必须相应的旋转。此后工件坐标系的X,Y,Z与原机床坐标系(MCS)XYZ方向不再一致,五轴插补算法需要随时自动完成工件坐标系的旋转,保证正确的刀具运行轨迹,如下图所示。
 
由于工件坐标系随转台一起旋转,数控系统在手动操作模式下给用户提供了选择机床坐标系MCS还是工件坐标系WCS的机会。如果用户选择了WCS下的手动操作,而且WCS已经旋转,则手动操作将按照旋转后的坐标轴方向运动,以C轴转台为例:如果C轴已由初始的0度,CCW旋转45度后,用户选择WCS下手动X轴,数控机床的会XY轴联动,走X-Y平面45度斜线,如图1所示。上述行为对于工件的寻边和手动定位加工很方便,不需要顾及转台转了多少度,只要依据图纸上工件坐标系所示的方向操作即可。在自动加工模式下,所有的G92,G54-G59,G52都是在WCS下设定的,都会跟随WCS旋转而旋转。
自动加工中值得注意:如果用户在工件坐标系下编程,推刀前建议用户使用G53回到MCS下,再按照MCS坐标系执行退刀动作;否则就要想清楚当前WCS与MCS的角度关系,例如:C轴为0度时与180度时WCS坐标系正好方向相反,进刀起始位置C为0度,XY为WCS绝对值正值的话,退刀位置时C为180度,再向回到起始点就要回到WCS绝对值负值了。
对于具有摆头结构的机床而言,五轴数控系统在机床坐标系MCS中只关注控制点(摆头回转中心)的坐标, 而在工件坐标系WCS中五轴数控系统控制刀尖点坐标,如图所示。结合WCS随转台旋转,数控系统这样控制行为使WCS下始终正确地反映刀具与工件间的相对位置关系,用户可以安心对照工件图纸,考虑WCS下工件编程即可,无须考虑机床结构。

RTCP

五轴加工中,不论是刀具旋转还是转台转动,都使刀尖点产生了XYZ的附加运动。五轴数控系统可以自动对这些转动和摆动产生的工件与刀尖点间产生的位移进行补偿,称之为RTCP(围绕刀尖点旋转)控制功能。例如,大连光洋的GNC61采用G203起动该功能;在西门子840D中,使用TRAORI开启RTCP;海德汉TNC530中,使用M128开启RTCP。这样用户可以在五轴机床上,如同3坐标一样的编程,可以适时加入调整刀具与工件间姿态调整的旋转指令,而不需要考虑这些旋转指令带来的附加运动。

刀具矢量编程

五轴编程中,推荐采用刀具相对于工件坐标系(WCS)的姿态矢量来表达工件与刀具的姿态关系。这样处理的结果是用户不必考虑五轴机床的具体类型和结构,相同的工件程序可以在不同类型的五轴机床上加工,所有与机床结构相关的坐标处理完全由五轴数控系统自动完成。
 
例如,西门子840D采用(A3,B3,C3)来表达刀具矢量;大连光洋的GNC61采用(VX,VY,VZ)表示刀具在WCS下刀尖点指向控制点的姿态,对(VX,VY,VZ)向量长度无特殊要求。

五轴斜面加工

据统计,世界范围内,五轴机床真正用于五轴联动加工仅占5%,
如叶轮、叶片、航空结构件等特殊零件;73% 用于五轴定向加工,如V型发动机缸体、模具制造等;五面体加工占22%[1],例如机床上的箱体结构零件。
西门子840D中采用Frames的概念,描述空间斜面和坐标系。
海德汉TNC530中采用PLANE功能定义加工作业斜面。例如:采用空间角定义斜面:
N50 plane spatial spa+27 spb+0 spc+45 ... 空间角A:旋转角SPA是围绕机床固定X轴旋转;空间角B:旋转角SPB是围绕机床固定Y轴旋转;空间角C:旋转角SPC是围绕机床固定Z轴旋转。除了空间角定义外,TNC530还支持投影角、欧拉角、三点等多种空间斜面定义。
大连光洋的GNC61在工件坐标系WCS下,设有G92坐标系,该坐标系负责对其上的用户定义的坐标系整体偏移, 可以用来表达卡具的基准。在G92坐标系内,用户可以定义G54, G55, G56, G57, G58, G59坐标系,可以用来表达同一卡具基准下的多个工件各自的坐标系。GNC61设计了程序局部坐标系G52,该坐标系位于G54-G59下,可以任意旋转倾斜。在设定的加工程序中有效,一旦新加载程序,G52会自动清0。GNC61支持用户在程序中直接定义G52(空间角)来指定一个倾斜的坐标系。此外GNC61还提供其他倾斜的坐标系定义的内建函数,包括:SG52_EULER,通过欧拉角的方式来指定G52旋转坐标系;;SG52_2VEC,通过使用两个矢量来定义加工面;SG52_3PT,通过三点的方式来指定G52旋转坐标系。
此外在定义斜面的基础上,五轴数控系 统还需要支持刀具自动定向到垂直于斜面的姿态。海德汉的TNC530有3种处理方式MOVE、TRUN、STAY。其MOVE模式在开启RTCP的情况下,实现刀具自动定向,即保持刀尖点不动;TRUN模式下刀具自动定向,但不开启RTCP,即刀具只摆动,不进行RTCP补偿运动;STAY则表示不产生任何运动,但相应的所需的运动量被系统变量保存。大连光洋GNC61在自动加工模式下,GNC61支持两种自动刀具定向指令:G200刀具自动垂直斜面非RTCP;G201 刀具自动垂直斜面带RTCP。

五轴插补

通常在默认状态下所谓五轴数控系统采用五轴直线插补,
即将ABC增量等同直线增量进行插补。不论是否开启RTCP五轴直线插补在都没有直接约束刀具的侧刃,可能造成侧刃形成的零件尺寸和形貌不符合要求。为此,数控厂商往往还支持其他约束侧刃的特殊的五轴插补。
5.1平面刀矢插补
在冲裁模具中,存在大量侧壁保持平面的要求;航 空薄壁结构件也存在大量侧壁倾斜要求的型腔铣削加工;焊接零件焊接坡口也有铣倾斜面的要求。西门子840D提供ORIVECT,以及大连光洋GNC61的G213都是上述功能。通常该功能自动启动RTCP。
5.2双样条约束插补
即指定刀尖点的样条曲线,再另一条约束刀具的样条曲线,数控系统将完成两样条曲线约束的直纹面的插补。西门子840D提供ORICURVE,以及大连光洋GNC61提供的G6.3X都实现上述功能。
5.3圆锥插补
指定刀具矢量沿特定圆锥表面运行。
该插补功能适合加工圆锥及空间斜面间圆锥过渡曲面。西门子840D提供的ORICONCW\ORICONCCW\ORICONIO\ORICONTO即完成上述功能。
空间刀具半径补偿
对于五轴加工,RTCP起到了刀具长度补偿的作用。而五轴的刀具半径的补偿可以在不修改五轴加工程序中工件表面坐标点的情况下,调整各种类型的刀具,均能保证工件表面形状的正确。在FANUC最高级的30i系列数控系统和西门子高端的840D系统都支持上述功能。
五轴速度平滑
在五轴加工中,由于开启RTCP,以及各种特殊的五 轴算法,例如平面矢量插补、双样条约束插补等,都可能造成各直线进给轴速度的波动,这些波动有时会造成机床振动,影响零件表面加工质量,超过机床允许范围。为此五轴数控系统需要对各轴速度进行平滑调整。目前FANUC最高级的30i系列数控系统和西门子高端的840D系统都支持上述功能。

工作流程

1、输入:零件程序及控制参数、补偿量等数据的输入,可采用光电阅读机、键盘、磁盘、连接上级计算机的DNC 接口、网络等多种形式。CNC装置在输入过程中通常还要完成无效码删除、代码校验和代码转换等工作。
2、译码:不论系统工作在MDI方式还是存储器方式,都是将零件程序以一个程序段为单位进行处理,把其中的各种零件轮廓信息(如起点、终点、直线或圆弧等)、加工速度信息(F 代码)和其他辅助信息(M、S、T代码等)按照一定的语法规则解释成计算机能够识别的数据形式,并以一定的数据格式存放在指定的内存专用单元。在译码过程中,还要完成对程序段的语法检查,若发现语法错误便立即报警。
3、刀具补偿:刀具补偿包括刀具长度补偿和刀具半径补偿。通常CNC装置的零件程序以零件轮廓轨迹编程,刀具补偿作用是把零件轮廓轨迹转换成刀具中心轨迹。在比较好的CNC装置中,刀具补偿的工件还包括程序段之间的自动转接和过切削判别,这就是所谓的C刀具补偿。
4、进给速度处理:编程所给的刀具移动速度,是在各坐标的合成方向上的速度。速度处理首先要做的工作是根据合成速度来计算各运动坐标的分速度。在有些CNC装置中,对于机床允许的最低速度和最高速度的限制、软件的自动加减速等也在这里处理。
5、插补:插补的任务是在一条给定起点和终点的曲线上进行“ 数据点的密化 ”。插补程序在每个插补周期运行一次,在每个插补周期内,根据指令进给速度计算出一个微小的直线数据段。通常,经过若干次插补周期后 ,插补加工完一个程序段轨迹,即完成从程序段起点到终点的“数据点密化”工作。
6、位置控制:位置控制处在伺服回路的位置环上, 这部分工作可以由软件实现, 也可以由硬件完成。它的主要任务是在每个采样周期内,将理论位置与实际反馈位置相比较, 用其差值去控制伺服电动机。在位置控制中通常还要完成位置回路的增益调整、各坐标方向的螺距误差补偿和反向间隙补偿,以提高机床的定位精度。
7、I/0 处理:I/O 处理主要处理CNC装置面板开关信号,机床电气信号的输入、输出和控制(如换刀、换挡、冷却等)。
8、显示:CNC装置的显示主要为操作者提供方便,通常用于零件程序的显示、参数显示、刀具位置显示、机床状态显示、报警显示等。有些CNC装置中还有刀具加工轨迹的静态和动态图形显示。
9、诊断:对系统中出现的不正常情况进行检查、定位,包括联机诊断和脱机诊断。

公司:河南升瑞电气有限公司
电话:0371-88881886 66660816    13007535835
传真:0371-86065007   
联系人:张伦 
网址: http://www.hnshr.com
地址:郑州市西太康路70号新太康机电城A座九层


   发表时间:〖2019-3-25 16:55:34  本文作者:郑州数控系统 河南数控系统 数控系统改造    浏览次数:4924

友情链接:

地址:郑州市西太康路70号(与铭功路交叉口)A座九层 电话:0371-88881886/66660816 传真:0371-86065007
手机:13007535835(张伦)QQ:493459107
管理

 
豫ICP备11022223号-2